
UNLIMITE(G

AD-A 24-5 044

RSRE
MEMORANDUM No. 4540

ROYAL SIGNALS & RADAR
ESTABLISHMENT

A FRONT END IMPLEMENTATION OF THE
POLLYANNA SECURE DBMS

Author G R Hutchinisoni

PROCUREMENT EXECUTIVE, f
WIT ~MINISTRY OF D EFENCE,6
z RSRE MALVERN,
2 WORCS.

0
z

~ ~ -~92-02009

U,

UNLIMITED

24 Ii 4 0 15

CONDITIONS OF RELEASE
0114215 306816

..................... DRIC U

COPYRIGHT (c)
1988
CONTROLLER
HMSO LONDON

............I DRIC Y

Reports quoted are not necessarily available to members of the public of to commercial
organisations.

..................... DRIC N

DCAF CODE 090)996

Royal Signals and Radar Establishment

Memorandum 4540

Title: A Front End Implementation of the

Pollyanna Secure DBMS.

Author G.R.Hutchinson

Date November 1991

ABSTRACT

Pollyanna is a simple secure DBMS which utilises polyinstantiation. It
has been designed and implemented to illustrate the problems which
may be encountered when applications are built on top of a
polyinstantiating DBMS. The implementation comprises of a front end
to a standard commercial RDBMS. The front end performs query
modification and result filtering to achieve security. This document
describes Pollyanna, the front end software and some of the problems
which arose during the design of the system.

Copyright © Controller HMSO London 1991

Contents
1. INTRODUCTION ... 1

2. THE POLLYANNA SECURE RDBMS 1
2.1 Classifications and Clearances 1
2.2 Labelling in Pollyaxina ... 1
2.3 The Pollyanna Query Language Interface 2

3. THE FRONT END IMPLEMENTATION OF POLLYANNA 5
3.1 The Front End's Internal Tables 5
3.2 Implementing Queries .. 6

4. EXAMPLE .. 7

5. CONCLUSIONS ... 8

6. REFERENCES ... 9

£AO0uaton For

OTIS GR&I
DTIC TAH C]
Untnootwcvd fl

by
Distribution/

AvailrtAl1ty Codes
'Avail and/or

I Spoolal' iv'

1. INTRODUCTION

When military, multi-level security is required in a database, confidentiality controls
must be enforced over and above those controls normally implemented in a
commercially available Database Management System (DBMS). One approach, called
polyinstantiation [1], has been widely adopted, but provides confidentiality at the
expense of integrity [4]. Pollyanna 1 is a Relational DBMS (RDBMS) which has been
developed to illustrate these problems.

Pollyanna has been implemented by imposing a software front end on the standard
commercially available Oracle RDBMS, a technique discussed in [3]. Oracle is used to
store all the data and classifications and to perform query processing. The front end
modifies the users' queries, by adding various checks, and filters the results to ensure
that the users do not obtain information for which they do not have a clearance.

The Pollyanna front end was based on a front end implementation of the SWORD
secure DBMS [2]. SWORD does not use polyinstantiation to achieve security but it was
possible to reuse much of the software.

The front end provides an interactive query processor. This allows the user to enter
queries, written in a subset of SQL, and returns any results by displaying them on the
screen. The software is written C with some embedded SQL. The software runs on
VAXNMS and Apple Macintosh.

2. THE POLLYANNA SECURE RDBMS

2.1 Classifications and Clearances
Poliyanna supports classifications which comprise of three parts: Hierarchies,
Caveats and Categories. The hierarchical components are typically 'Unclassified',
'Confidential', 'Secret' and 'Top secret'. Caveats typically 'UK eyes only' or 'Nato'
while categories are typically 'Nuclear', 'Crypto' and other code words.

Classification A dominates classification B if:
the hierarchical component of A is greater than that of B

and all the caveats of A are included in those of B
and all the categories of B are included in those of A

Each user of the system is assigned a classification which is their clearance. When a
user logs onto the Pollyanna system, they select a session level which must be
dominated by their clearance.

The Pollyanna system enforces a security policy of "no flows down". That is no user
can observe information entered by a user with a higher clearance.

Labelling in Pollyanna
it is possible to classify data at the individual field level [11, all secure DBMS

prouucts based on polyinstantiation, that have been announced to date, only provide row
level labelling. Since Pollyanna has been developed to illustrate problems with
mountir.g applications on these DBMSs, it too only provides row level labelling.

Pollyanna actually applies classifications at both the table and row levels. The table in
Figure I shows an example table. The column ROW-CLASS contains the row
classifications and the value in square brackets is the table classification.

IPollyann: "A blindly optimistic person" - Webster's College Dictionary

I

BEN.CARS [UNCLASSIFIED]

ROW-CLASS MAKE PRICE
UNCLASSIFIED ' Nissan Micra 200001

CONFIDENTIAL Hillman 104686
SECRET Robin Reliant 12345

Figure 1. Examnle Polvinstantiating Database Table

For a user to be able to detect the existence of the table, a prerequisite of being able to use
it in any way, the session level must dominate the table classification.

To be able to detect a row and observe its contents, the session level must also dominate
the ROWCLASS. That is, the ROWCLASS classifies the existence, classification
and content of all fields in the row.

2.3 The Pollyanna Query Language Interface
The front end sits between the users' processes and the database (see figure 2). The
program takes requests from the users and then filters the information to uphold the
confidentiality constraints. The requests that the user makes are in a simple version
of SQL which has additional constructs to handle classifications.

Process Front End RDBMS
(Secret)

Process Pollyanna Oracle

(Unclass- Front End RDBMS

ified)

Figure 2. The Front End Architecture

2.3.1 SELECT

tableName [userldent . I tableldent
colName ::= [tableName . I colldent

factor [string I integer I colName]
term ::= [factor I factor [+ I -] term)
expression ::= [term I term [I / I expression I (expression) I
relation ::= [expression [= I <> I expression]
condition ::= [relation Irelation [AND I OR I condition

I NOT condition I (condition) I

SELECT (colName I * I FROM tableName[WHERE condition I

A Select request returns values for each row which meets the criteria given in the where
clause and whose row class is dominated by the session level.

2

An example is shown in figure 3. This is a screen copy of the Apple Macintosh front end
implementation. The example shows two views of the same table (the table is the same
as given in figure 1). The session level for each window is displayed on the window's
title bar and also in the report from the 'who' command.

UNCLASS IFI [D SE1:I I[' 2i-

POLY: select * from care;

PCILY- select * fron cars;

ROW.LI.ASS WAK. PRICE
ROWLCLRS fRIE PRICE

UMCLAS ,Issan Mlcra 20DOO
UHDLAS His an Micro 20000 SECRET Robin Reliant 12315

CONFID Willman 104686
1rou selocted

3 rows selected
POLY: who;

You are DEN (UNTRU5TED) POLY: uho;
Hlerarchy = UMCLBSSIFIED You are DE1 (UNIRUSTED)

Hierarchy - SECRET

POLY: zr;

POLY:1

Figure 3. Sample output from two select reauests to the Pollyanna RDBMS

2.3.2 INSERT

INSERT INTO tableName [(colldent,.) I VALUES ([string I integer],.

An insert adds a new row to the table, with the ROW-CLASS se . to the session level. The
user is not permitted to set the row class explicitly. The number of values to be inserted
must be the same as the number of columns in the table (not counting the
ROWCLASS).

2.3.3 DELETE

DELETE FROM tableName [WHERE condition]

A delete removes all rows which satisfy the condition given in the where clause, and
whose row class equals the session level.

2.3.4 UPDATE

UPDATE tableName SET colldent = expression [WHERE condition I

The expressions in the set clauses may not refer to any columns other than those being
set. That is copying from one column to another is not allowed, but modifying a column
based on its original values is allowed.

An update affects all rows which satisfy the condition given in the where clause, and
whose row class is dominated by the session level. A copy is made of those affected rows

3

whose row class is lower than the session level. The row class of the copy is changed to
the session level and only this copy is updated. Those affected rows whose row class
equals the session level are updated directly.

For example, take the case of a Secret user updating the table described in figure 1 with
the query :-

UPDATE CARS SET PRICE = PRICE * 2;

Looking at the table 'cars' we see that the call will affect 3 rows. The classification of
the row (UNCLASSIFIED, 'Nissan Micra', 20000) is lower than the session level.
Therefore a copy of the original row will be retained and a new row will be inserted
with the information (SECRET, 'Nissan Micra', 40000). A similar transformation
will be made to the row (CONFIDENTIAL, 'Hillman', 104686). However the
classification of the row (SECRET, 'Robin Reliant', 12345) equals the session level.
Therefore the row is simply updated to become (SECRET, 'Robin Reliant', 24690).

The effect of this is to turn a +.-ble with three rows into a table with five. This is one of the
strange effects of polyinstantiation - an update may increase the number of rows [5].
Figure 4 shows the output from the Macintosh frort end before and after the update
described in the example above. The left hand window shows a select made before the
update and the actual call for the update. The right hand window shows a select made
after the update and details of the session level for both windows.

It is not possible to update a field which is designated as being part of a unique key.
This restriction is made because it is found in most polyinstantiating DBMSs.

SECRET SECRET

POLY; select * from corsi
POLY; seet * froai cars;

ROW-CLASS MAKE PRICE
ROW-CLASS MAKE PRICE

UNCLAS Nissan Micra 2D000
UNCLAS Nissan licroa 20000 SECRET Rabin Reliant 24690
SECRET Robin Reliant 12345 CONFID Hillman 104686
CONFID Hillman 104686 SECRET His3an Micra 4D00

SECRET Hi llmon 209312
3 rDVs selected

5 rDUs selected

POLY: update cars set price =

2: price 4 2; POLY: who;
3 rov5 provezzed. You are BEN (UHTRUSTED)

Hierarchy - SECRET

POLY: zzz;

POLY;

Fivure 4. Two windows showine the effect of an undate in Pollvanna

4

2.3.5 CREATE TABLE

type::= [[NUMBER I CHAR I VARCHAR I [(integer)] I DATE I FLOAT]

CREATE TABLE tableldent (colldent type [[NOT] NULL I)

A create table query creates a new table with the specified columns. An extra column,
ROWCLASS, is also created implicitly. The table classification of the new table is set
equal to the session level. The owner of the new table is the user making the query.

2.3.6 CREATE UNIQUE INDEX

CREATE UNIQUE INDEX indexldent ON tableName (colldent

A unique index can be created on some specified set of columns. The ROWCLASS
column is implicitly added to this set.

2.3.7 Others
Other queries are as for standard SQL.

DROP TABLE tableName
CREATE INDEX indexldent ON tableName (colldent
DROP INDEX indexldent

3. THE FRONT END IMPLEMENTATION OF POLLYANNA

3.1 The Front End's Internal Tables
For Pollyanna cont. ls to be enforced, the classifications of tables and rows have to be
stored. The table classes for all tables are held in a table called TABLE-DETAILS.
Row classes are held in an additional column, called ROWCLASS Key fields are
recorded in another table, TABLE-KEYS. This is needed to support the prohibition on
updates of key fields.

These table are owned by a special Oracle user which represents the Pollyanna DBMS.
This user does not correspond to any Pollyanna user and the tables are not directly
accessible to any Pollyanna users. The tables must be modifiable by the front end on
behalf of all Pollyanna users. To this end global access privileges are granted on the
tables to the public user group.

Figure 5 gives an example of the two tables.

TABLE-DETAILS
TNAME CLASS O[COLNOS
BEN.CARS 0 2

TABLE-KEYS
K-NAME JKOWNER ITNAME IK-LIST
DRIVE BEN I BEN.CARS I ROW-CLASS, MAKE

Ficnure 5. The tables needed for the Pollyanna front end

The TABLE-DETAILS table has three columns:
TNAME

The name of the table being created for the user,
CLASS

The underlying representation of the table classification.
COL-NOS

This contains the number of columns used in the table. However the column
ROW-CLASS is not taken into account, meaning that there are actually
COL-NOS + 1 columns in the underlying table.

Rows are inserted into TABLE-DETAILS during the creation of a new table and are
deleted during the handling of a table drop. The entries are never updated.

The TABLE-KEYS table has four columns:
KNAME

The name of the unique key created for the user.
K_OWNER

The name of the owner of the unique key.
T_NAME

The name of the table on which the unique key is imposed.
K_LIST

This column contains the list of all the columns used in the unique key. The
column names are separated by commas.

Records are inserted into TABLEKEYS during the creation of a new unique key and
are deleted during the handling of a unique key drop. The entries are never updated.

Additional tables contain information regarding the names and clearances of the
authorised Pollyanna u5ers, and the conversions between textual classifications and
their underlying representation.

3.2 Implementing Queries
A user can only make insert, select, update or delete queries on a table if their session
level dominates the table's classification. 7his is checked by extracting the table class
from the TABLEDETAILS table. If the table does not exist or the session level does not
dominate the table's classification, a "table does not exist" error is returned to the user.

3.2.1 SELECT
A select query is modified so that it also retrieves the ROW-CLASS column, in
addition to any columns requested by the user. If the user requests all columns, by
using a *, the ROW-CLASS is returned anyway. Those rows retrieved whose row class
is dominated by the session level are passed on to the user. Any others are discarded.

As the ROWCLASS had to be retrieved for filtering, it seemed seiisible to display it.
The hierarchical part of the row classification is shown, followed by an ellipsis if any
caveats and categories are also included.

3.2.2 UPDATE
An update query in Pollyanna is implemented by sending three queries to Oracle. The
first query updates .3] rows with the same ROWCLASS as the present session level.
This query is formed from the original by extending the where clause with:

UPDATE WHERE (......) AND ROW-CLASS = session-level

The second query is a select that retrieves all rows meeting the condition of the where
clause which have a row class not equal to the session level:

SELECT * FROM WHERE (......) AND ROW-CLASS <> sessionjevel

6

The front end then discards all rows not dominated by the session level. The
remaining rows are modified as requested by the SET clause and the row class is
changed to the session level. The new row is then inserted into the table.

INSERT INTO VALUES(session level)

As the update is done in two stages, failure of the system at any point means that there
could well be records that are now inconsistent and need to be returned to their former
state. For simplicity, a simple "rollback" is used, even though this may well cancel the
actions of previous queries. A more complex solution would involve the front end
remembering what records have been modified and in what way, therefore allowing
the front end to undo the modifications.

During an update, problems occur when the set of affected rows contains rowq with the
same values in the unique keys except for a difference in the ROW-CLASS, for
example, the rows (SECRET, 'Beetle', 4300) and (UNCLASSIFIED, 'Beetle', 34322)
where the unique key is on the first two columns.

If two or more such records are dominated by the present session level then the results of
the update become ambiguous. The only sensible solution to this problem seems to be to
return an error to the user.

The problem can only be solved by he user rew-riting the update request to select nly 1
of the clashing records. Unfortunately this may not always be possible and the update
request may have to be made as two distinct queries.

3.2.3 INSERT
As inserted rows are given the same ROWCLASS as the session 1-vel then it is the job
of the front end to make sure that the user doesn't try to define a different value for it. If
the user specifies the ordering of the columns to be set then the front end adds the
column ROW-CLASS to the beginning of the column name list and the session level to
the front of the list of values. If the order is not specified, the front end just adds the
session level to the beginning of the list of inserted values.

INSERT INTO -.... (ROW-CLASS,) VALUES (sessionlevel)
INSERT INTO VALUES (session level,......)

3.2.4 DELETE
For deletes the front end adds to the users where clause the extra condition that the row
class must equal the session level:

DELETE FROM WHERE (......) AND ROW CLASS = session-level

4. EXAMPLE

To illustrate the problems of polyinstantiation, consider a simple example database
which records the destinations of aircraft flights. There is just one table, called flights,
which is originally empty. The table has two columns, Fno and Dest, plus the 'virtuaV
column RowClass.

RowClass Fro Dest

Now suppose a Secret user inserts a row to show that flight 100 is heading for Ascension
on a Secret mission. The new row is labelled Secret and so will be invisible to any
users with lower clearances. No problems so far.

RowClass FPso Dest
Secret iOn Ascension

7

If, however, an Unclassified user wants to send an aircraft to Paris, the problems
begin The user would look at Lhe table to see which aircraft are busy with the following
query:

SELECT Fno FROM flights

This would retrieve no rows, because the table only contains a row which is hidden
from the user. Therefore the Unclassified user may conclude that flight 100 is idle and
choose this for the flight to Paris:

INSERT INTO flights VALUES(100, 'Paris')

This results in the table recording two destinations for flight number 100. The
Unclassified user sees just one row, and so is not confused, but the Secret user sees both.

RowClas Fno Des

Secret [n l~Ascension
Unclass 100 Paris

Now suppose the Unclassified user chooses another flight. This time a number other
than 100 must be chosen, because it is seen to be in use. Suppose it is decided that flight
number 200 is to go to Rome:

RowClass Rao Dest
Secret 100 Ascension
L'nclass 100 Paris

Unclass I Rome

The Secret user can see that flight 200 is assigned to Rome. but suppose that emergency
arises and flight 200 must be diverted on a Secret mission to Gander:

UPDATE flights SET Dest = 'Gander' WHERE Fno = 200

The ro% for flight 200 is Unclassified, so the Secret user cannot update it directly
without some information flowing to the Unclassified user. ThereforL, Pollyanna
polyinstantiates the row, effectively turning the update into an insert. This results in
a new row which shows flight number IL heading for Gander.

RowClass Fno Dt-A
Secret 100 Ascension
Unclass 100 Paris
Unclass 200 Rome
oecret 200 Gander

Now flight 200 has two destinations which is bound to cause trouble

The problems occur because Pollyanna allows just one classification for everything
about a row, including its existence, its classification and the values of all its fields.
The key to the success of the SWORD DBMS is that it does provide finer grained
classificat ons, which not only allow individual fields to be separately classified, but
also the fi !lds to be classified higher than the existence of the row.

5. CONCLUSIONS

Pollyanna was designed to be used as a demonstration of the polyinstantiation
approach and to be used in comparative demonstrations with the SWORD system.

8

The design of Pollyanna has highlighted some problems with the effects of
polyinstantiation on the meaning of update queries. In Pollyanna it was decided to
reject update queries that result in duplicate keys. Other solutions are possible,
including only updating the most highly classified version of a row. Future work could
provide these alternatives as an option and allow further evaluation and comparison of
the different approaches.

Further extensions are possible to relax the rather strong constraints on set lists in
update queries. These constraints were imposed to ease the implementation but are not
inhercnt in the design of Pollyanna. Also improvements could be made to the error
recovery code, so that an erroneous query does not cause a rollback of all previous work
in the transaction.

6. REFERENCES
[11 D.E.Denning, T.F.Lunt, R.R.Schell, M.Heckman, W.Shockley, A Multilevel

Relational Data Model, Proceedings 1987 IEEE Symposium on Security and
Privacy, April 27-29, Oakland, California, pp220-234.

[21 AWood, The SWORD Model of Multilevel Secure Databases, Royal Signals
and Radar Establishment Report 90008, June 1990.

131 S.R.Lewis, The Front End Approach to Database Security, Proceedings of the
seventh international IFIP TC11 Conference on Information Security,
Brighton, UK, 15-17 May 1991.

[4i Simon Wiseman, On the Problem of Security in Data Bases, Procs. IFIP
WGI1.3 Workshop of Database Security, Monterey CA, September 1989.

151 SJajodia & R Sandhu, Polinstantiation Integritv in Multilevel Relations.
Procs Syrnp. Security and Privacy, Oakland, CA, May 1990, pp104-115.

9

REPORT DOCUMENTATION PAGE DRIc Reference Number (if known) ..

Overall security classification of sheet U N C LA S S IFIE D ..
(As far as possible this sheet should on"'zr -:n! r ,Jssifed information. If it is necessary to enter classified information, the field oncemed
must be marked to indicate the dassification eg (R). (C) or (S).

Originators ReferenceReport No. Month Year
MEMO 4540 NOVEMBEP 1991

Originators Name and Location
RSRE, St Andrews Road
Malvern, Worcs WR14 3PS

Monitoring Agency Name and Location

iThe

A FRONT END IMPLEMENTATION OF THE
POLLYANNA SECURE DBMS

Report Security Classification Title classification (U, R, C or S)
UNCLASSIFIED U

Foreign Language Tite (in the case of translations)

Conference Details

Agency Reference Contract Number and Period

Project Number Other References

Authors Pagination and Ref

HUTCHINSON, G RI 9

Abstract

Pollyanna is a simple secure DBMS which utilises polyinstantiation. It has been designed and
implemented to illustrate the problems which may be encountered when applications are built on top of

a polyinstantiating DBMS. The implementation comprises of a front end to a standard commercial
RDBMS. The front end performs query modification and result filtering to achieve security. This document
describes Pollyanna, the front end software and some of the problems which arose during the design of
the system.

Abstract Classification (U,R.C of S)

U

Descriptors

Distribution Statement (Enter any limitations on the distribution of the document)

UNLIMITED

